Continual Learning: Fundamentals and Advances Workshop

APOR

2023

SING

Class Incremental Learning

From Backward to Forward Compatible

Han-Jia Ye

School of Artificial Intelligence, Nanjing University

yehj@nju.edu.cn

Closed and Open World

Incremental Learning

Incremental Learning: continually adjust the model with new data

van de Ven, Tuytelaars, Tolias. Three types of incremental learning. NMI 2022.

Class-Incremental Learning

• Class-Incremental Learning: enable the model to tackle new classes

Finetune the current model with new classes?

How to expand capacity without forgetting?

- In incremental learning, we want
 - Expand model's recognition ability for new classes
 - Resist catastrophic forgetting on old classes

Parameter regularization [Kirkpatrick et al. PNAS'17] [Friedemann et al. ICML'17]

 $\min_{\theta_{new}} \ell + SIM(\boldsymbol{\theta}_{old}, \boldsymbol{\theta}_{new})$

≻ Knowledge distillation [Li et al. TPAMI'17]

$$\min_{\theta_{new}} \ell + \sum SIM\left(f_{\theta_{old}}(\boldsymbol{x}_{new}), f_{\theta_{new}}(\boldsymbol{x}_{new})\right)$$

x_{new}

Model cannot **balance** between old and new classes

How to expand capacity without forgetting?

Test set 2

Exemplar set

Save limited instances to replicate old model's capability [Rebuffi et al. CVPR'17]

$$\min_{\theta_{new}} \ell + \sum_{x \in x_{new} \cup x_{old}} SIM\left(f_{\theta_{old}}(x), f_{\theta_{new}}(x)\right)$$

Lightweight rectification [Wu et al. CVPR'19] [Zhao et al. CVPR'20]

Direct reuse of feature representation

Save model and concatenate features [Yan et al. CVPR'21] [Wang et al. ECCV'22]

 $f(x) = W^{\mathsf{T}} \operatorname{Concat}[\phi_1(x), \phi_2(x), \dots \phi_b(x)]$

Save and freeze old model, only train new model.

Calibrate among multiple models via exemplar set.

Compatibility among Models

It requires desirable **Compatibility** for a model from closed world to open world

Two Kinds of Compatible

Backward Compatible

Forward Compatible

"Backward" Compatible

Backward Compatible

 Make modifications (like puting a patch) on the current model to maintain old class performance

- Backward compatible with *full* model reuse/updates (ECCV 2022)
- Backward compatible with *partial* model updates (ICLR 2023)
- Backward compatible with *few* updates (CoRR 2023)

Incremental model boosting

Wang, Zhou, Ye, Zhan. FOSTER: Feature Boosting and Compression for Class-Incremental Learning. ECCV 2022.

Full Model Reuse for Backward Compatible

Empirical evaluations

Input

freeze CNN new CNN

freeze CNN new CNN Input

freeze CNN new CNN

 FOSTER outperforms DER (which requires saving all historical backbones) even only using a single backbone

Challenges in feature reuse

How to assign memory budget for data and model to better reuse representations **given the same total budget**?

Partial model reuse for Backward Compatible

• How to assign memory budget for data and model to better reuse representations given the same total budget?

Zhou, Wang, Ye, Zhan. A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning. ICLR 2023.

Empirical evaluations

- When sharing shallow features, deep features learn **task-specific representations**
- When concatenating deep features of different tasks, we obtain representations **for all tasks**
- When all algorithms are aligned to the same memory cost, our method improves the performance for free

Backward compatible with few updates

The target of CIL is to obtain feature presentation for all tasks and resist forgetting
 Comparing to training from scratch, PTMs are born with generalizable features

Zhou, Ye, Zhan, Liu. Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need. CoRR 2023.

Backward compatible with few updates

Is (PTM + Prototypical Classifier) enough for any incremental learning task?

No! Adapting the model with downstream task can further enhance model's performance

How to combine PTM and adapted model's advantages?

First stage: model adaptation and merge Latter stages: prototypical classifier

Backward compatible with few updates

Method	CIFAR B0 Inc5		CUB B0 Inc10		IN-R B0 Inc5		IN-A B0 Inc10		ObjNet B0 Inc10		OmniBench B0 Inc30		VTAB B0 Inc10	
	$ar{\mathcal{A}}$	\mathcal{A}_B	$ar{\mathcal{A}}$	\mathcal{A}_B	$ar{\mathcal{A}}$	\mathcal{A}_B	$ar{\mathcal{A}}$	\mathcal{A}_B	$\bar{\bar{\mathcal{A}}}$	\mathcal{A}_B	$ar{\mathcal{A}}$	\mathcal{A}_B	$ar{\mathcal{A}}$	\mathcal{A}_B
Finetune	38.90	20.17	26.08	13.96	21.61	10.79	21.60	10.96	19.14	8.73	23.61	10.57	34.95	21.25
Finetune Adapter [10]	60.51	49.32	66.84	52.99	47.59	40.28	43.05	37.66	50.22	35.95	62.32	50.53	48.91	45.12
LwF [38]	46.29	41.07	48.97	32.03	39.93	26.47	35.39	23.83	33.01	20.65	47.14	33.95	40.48	27.54
L2P [72]	85.94	79.93	67.05	56.25	66.53	59.22	47.16	38.48	63.78	52.19	73.36	64.69	77.11	77.10
DualPrompt [71]	87.87	81.15	77.47	66.54	63.31	55.22	52.56	42.68	59.27	49.33	73.92	65.52	83.36	81.23
SimpleCIL	87.57	81.26	92.20	86.73	62.58	54.55	60.50	49.44	65.45	53.59	79.34	73.15	85.99	84.38
ADAM w/ Finetune	87.67	81.27	91.82	86.39	70.51	62.42	61.57	50.76	61.41	48.34	73.02	65.03	87.47	80.44
ADAM w/ VPT-Shallow	90.43	84.57	92.02	86.51	66.63	58.32	57.72	46.15	64.54	52.53	79.63	73.68	87.15	85.36
ADAM w/ VPT-Deep	88.46	82.17	91.02	84.99	68.79	60.48	60.59	48.72	67.83	54.65	81.05	74.47	86.59	83.06
ADAM w/ SSF	87.78	81.98	91.72	86.13	68.94	60.60	62.81	51.48	69.15	56.64	80.53	74.00	85.66	81.92
ADAM w/ Adapter	90.65	85.15	92.21	86.73	72.35	64.33	60.53	49.57	67.18	55.24	80.75	74.37	85.95	84.35

Outperforms SOTA on 7 benchmark datasets and various settings

Show substantial improvement on various pre-trained backbones

Forward Compatible

Forward compatible
Reserve *interface* for future possible

training process

characteristics during the current

Reserve embedding space for new classes

Traditional training

Forward compatible training

Zhou, Wang, Ye, Ma, Pu, Zhan. Forward compatible few-shot class-incremental learning. CVPR 2022

Forward compatible for few-shot CIL

Core idea: reserve embedding space for new classes

Empirical evaluations

Method	Accuracy in each session (%) \uparrow											PD	Δ PD
	0	1	2	3	4	5	6	7	8	9	10	v	
Finetune	68.68	43.70	25.05	17.72	18.08	16.95	15.10	10.06	8.93	8.93	8.47	60.21	+41.25
Pre-Allocated RPC [†] [32]	68.47	51.00	45.42	40.76	35.90	33.18	27.23	24.24	21.18	17.34	16.20	52.27	+33.31
iCaRL [33]	68.68	52.65	48.61	44.16	36.62	29.52	27.83	26.26	24.01	23.89	21.16	47.52	+28.56
EEIL [8]	68.68	53.63	47.91	44.20	36.30	27.46	25.93	24.70	23.95	24.13	22.11	46.57	+27.61
Rebalancing [21]	68.68	57.12	44.21	28.78	26.71	25.66	24.62	21.52	20.12	20.06	19.87	48.81	+29.85
TOPIC [41]	68.68	62.49	54.81	49.99	45.25	41.40	38.35	35.36	32.22	28.31	26.26	42.40	+23.44
SPPR [67]	68.68	61.85	57.43	52.68	50.19	46.88	44.65	43.07	40.17	39.63	37.33	31.35	+12.39
Decoupled-NegCosine [†] [26]	74.96	70.57	66.62	61.32	60.09	56.06	55.03	52.78	51.50	50.08	48.47	26.49	+7.53
Decoupled-Cosine [45]	75.52	70.95	66.46	61.20	60.86	56.88	55.40	53.49	51.94	50.93	49.31	26.21	+7.25
Decoupled-DeepEMD [57]	75.35	70.69	66.68	62.34	59.76	56.54	54.61	52.52	50.73	49.20	47.60	27.75	+8.79
CEC [58]	75.85	71.94	68.50	63.50	62.43	58.27	57.73	55.81	54.83	53.52	52.28	23.57	+4.61
Fact	75.90	73.23	70.84	66.13	65.56	62.15	61.74	59.83	58.41	57.89	56.94	18.96	

(a) Base session, 5 old classes & 5 virtual prototypes.

(b) Incremental session, 5 old classes & 5 new classes.

- On CUB200 (100 base classes, 10-way-5shot setting), FACT outperforms SOTA by 4.5%
- Reserved embedding space (dark) helps the learning of new classes

Forward compatible for few-shot CIL

Zhou, Ye, Ma, Xie, Pu, Zhan. Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks. TPAMI 2023.

Forward compatible for few-shot CIL

- Train calibration module via meta-learning
 - Learn to calibrate among old and new classes

Testing instance

Classifier

Calibrated embedding

Empirical evaluations

Methods	Base	Incremental	Harmonic Mean
Decoupled-Cosine CEC	71.5 71.1	28.8 33.9	41.1 45.9
LIMIT	73.6	41.8	53.3

- Calibration module helps obtain instance-specific embedding and adapt the logits, which rectifies the wrong predictions of the model
- Since new classes are limited, model tends to predict new classes into seen classes, the calibration module can improve new class performance adaptively

Applications of compatibility

Summary

Thanks

Incremental Learning

Using Transformer [Douillard et al. CVPR'22]

Tackles catastrophic forgetting Rely on PTM or specific network structure

Feature concatenation [Yan et al. CVPR'21]

Model's memory cost increasers as task number evolves

Knowledge distillation [Li et al. TPAMI'17]

Regularize performs on new tasks, Shift the burden from old model to new model

Parameter regularization [Kirkpatrick et al. PNAS'17]

Parameter importance differs from task to task, even being contradictory

 Making modifications among models compatible

Class Incremental Learning Toolbox

CIFAR-100 Reproduced

https://github.com/G-U-N/PyCIL

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, De-Chuan Zhan. *PyCIL: A Python Toolbox for Class-Incremental Learning*. SCIENCE CHINA Information Sciences 2023. Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu. *Deep class-incremental learning: A survey*. CoRR 2023.

Pre-trained Continual Learning Toolbox

https://github.com/sun-hailong/LAMDA-PILOT

Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan. PILOT: A Pre-Trained Model-Based Continual Learning Toolbox. CoRR 2023.