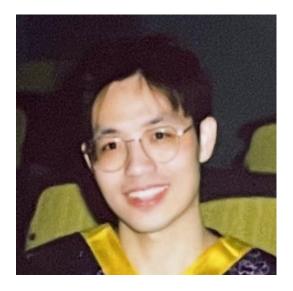
# **Efficient Continual Learning in Vision**



# Jay Z. Wu



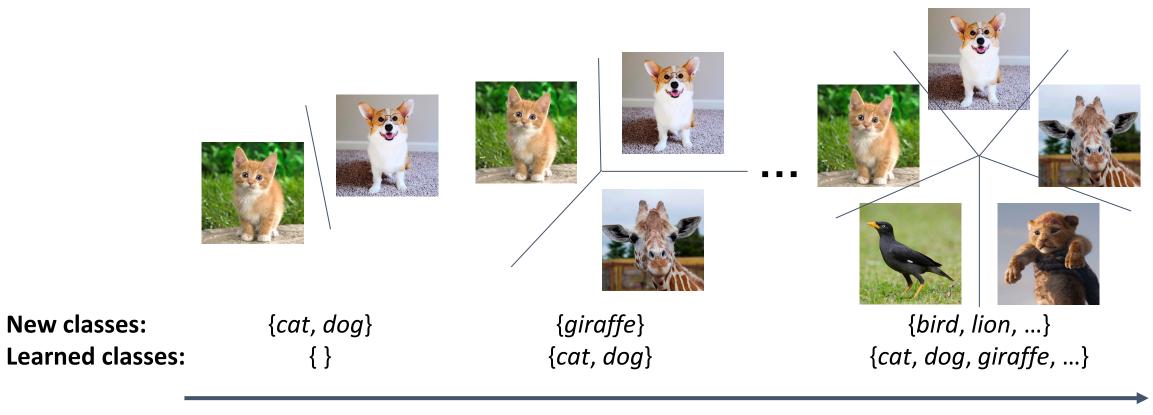




### https://zhangjiewu.github.io

# Continual Learning (CL)

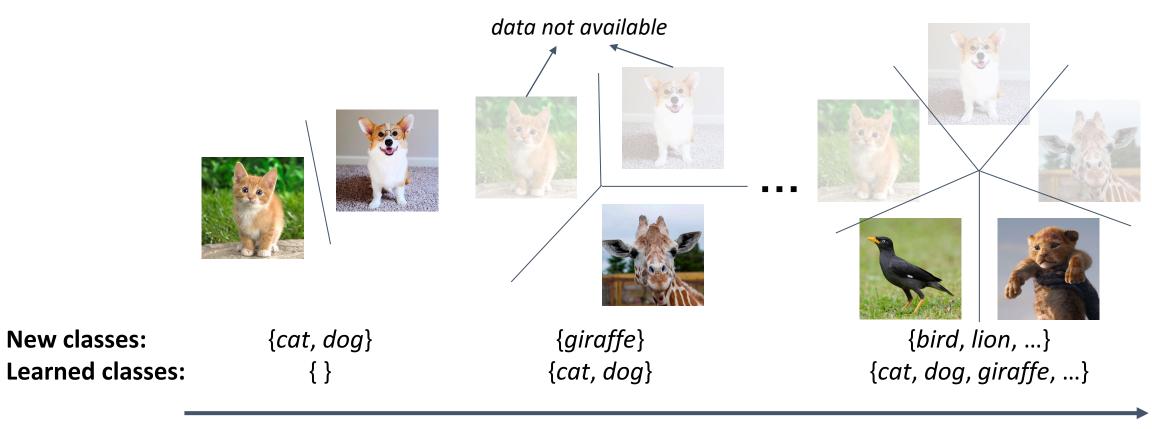
### A common class-incremental setting



time

# Continual Learning (CL)

### A common class-incremental setting

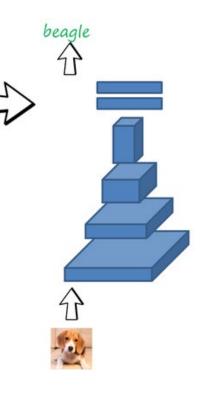


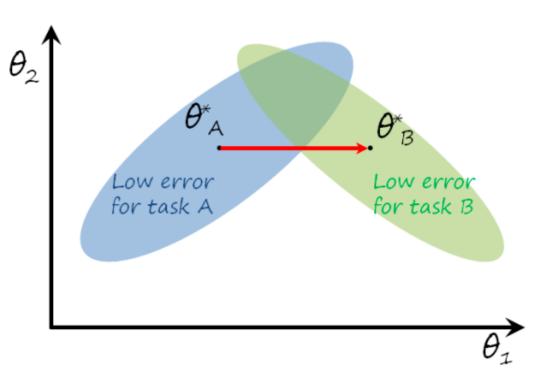
time

# Catastrophic Forgetting

The primary challenge in CL





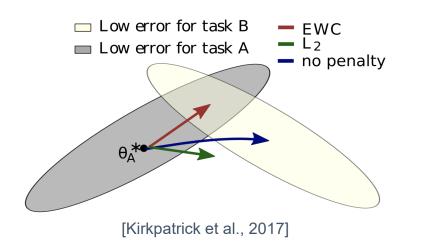


# Catastrophic Forgetting

### Standard solutions

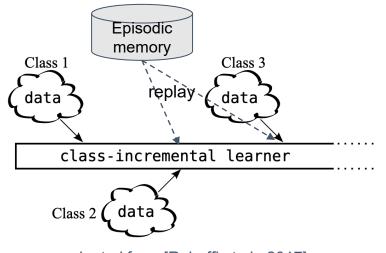
### **Regularization-based method**

- consolidate prior knowledge when learning on new data using an extra regularization term
- would fail when task boundary is blur



### **Replay-based method**

- explicitly retrain on a limited subset of stored samples while training on new data
- effective in complex real-world tasks



adapted from [Rebuffi et al., 2017]

Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017. Rebuffi et al. "icarl: Incremental classifier and representation learning." CVPR 2017.

### Complex data & tasks

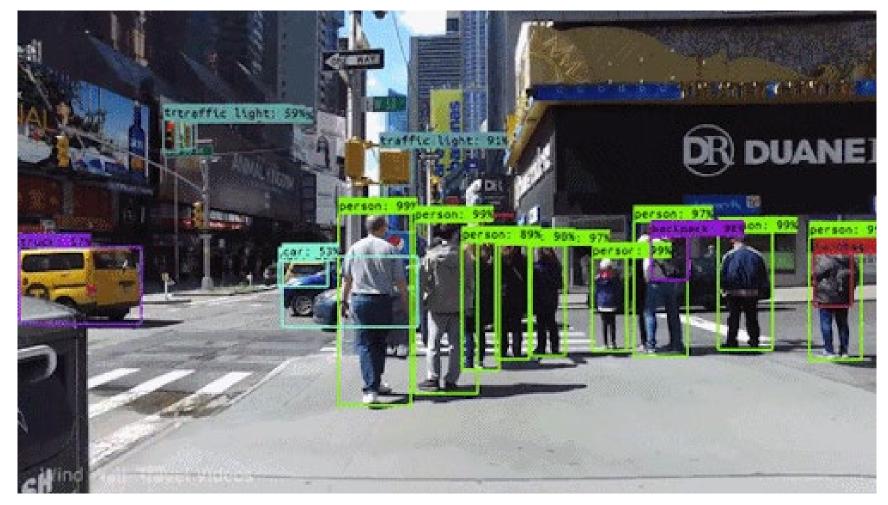


Image source: Towards Data Science

Constrained computation & annotation

# **Offline Learning**

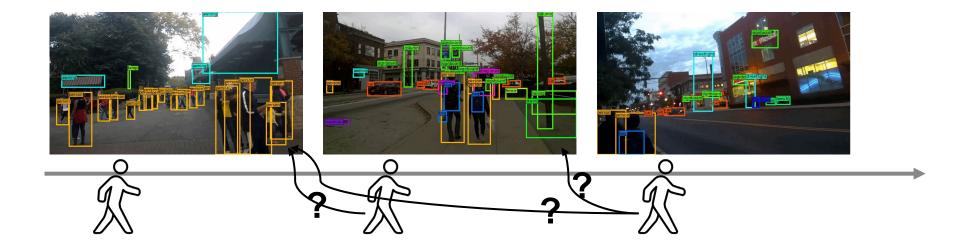






# **Online Learning**

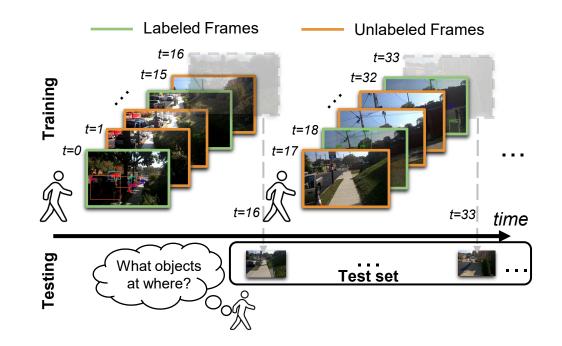




Prior setting [Wang et al., 2021]

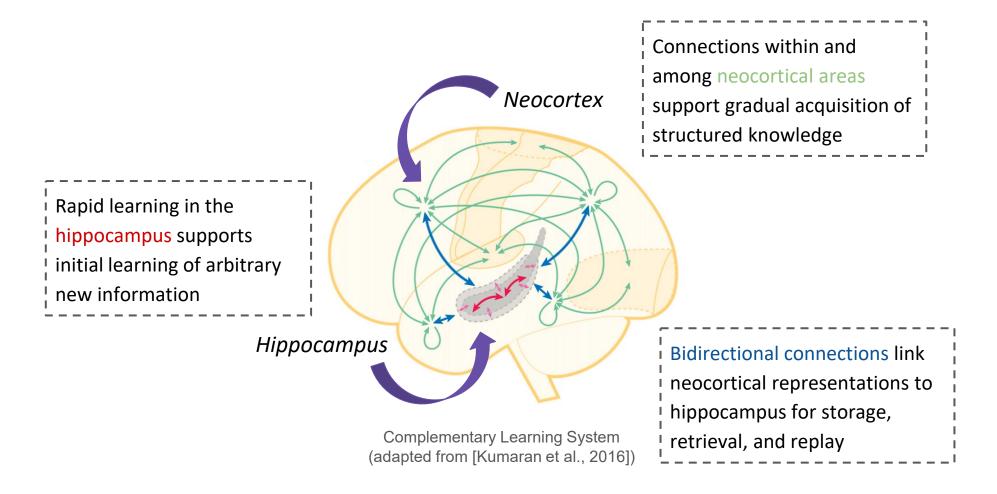
### Label-Efficient Online Continual Object Detection

Prior setting [Wang et al., 2021]



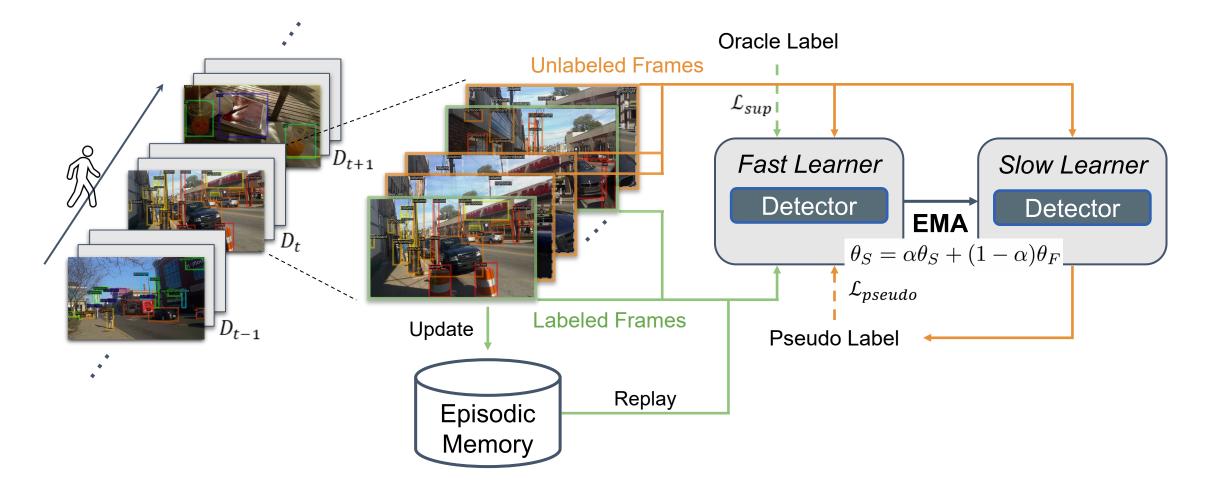
# Complementary Learning System (CLS)

### How does human brain learn?



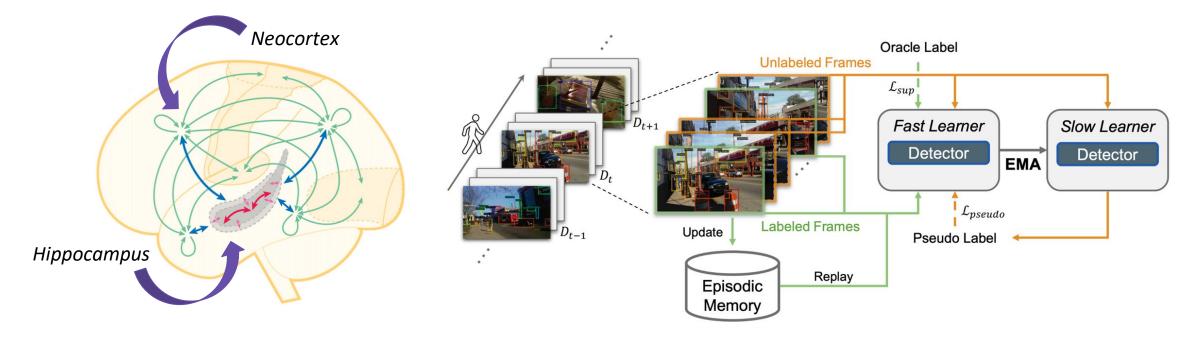
Kumaran et al. "What learning systems do intelligent agents need? Complementary learning systems theory updated." Trends in cognitive sciences 2016.

### A plug-and-play module inspired by CLS



Wu et al. "Label-efficient online continual object detection in streaming video." ICCV 2023.

### A plug-and-play module inspired by CLS

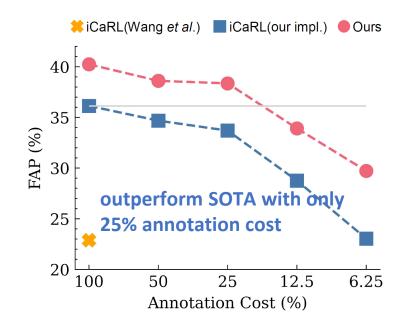


**Fast Learner**: quickly encodes new knowledge from current data stream and then consolidate it to the slow learner

**Slow Learner**: accumulates the acquired knowledge from fast learner over time and guides the fast learner with meaningful pseudo labels

Wu et al. "Label-efficient online continual object detection in streaming video." ICCV 2023.

### SOTA performance with minimal annotation cost and forgetting

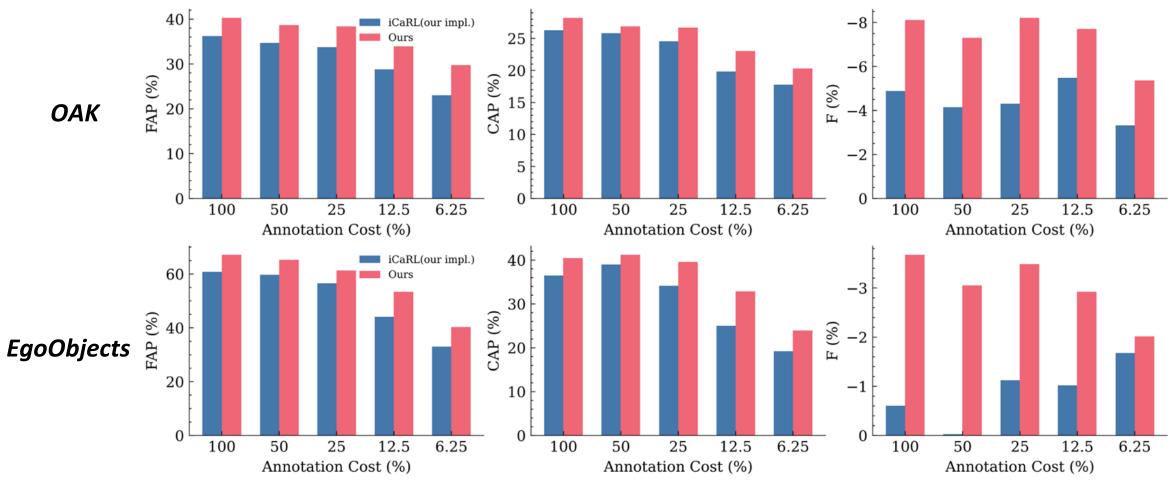


|                    |                 |              | OAK                                       |                             |                           | EgoObjects                |                           |
|--------------------|-----------------|--------------|-------------------------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
|                    | Annotation Cost | FAP (†)      | $\operatorname{CAP}\left(\uparrow\right)$ | F (↓)                       | FAP (†)                   | CAP (†)                   | F (↓)                     |
| Incremental        | 100%            | 8.38         | 7.72                                      | 0.03                        | 10.21                     | 3.55                      | 1.48                      |
| Offline Training   | 100%            | 48.28        | 35.23                                     | -                           | 86.18                     | 59.81                     | -                         |
| EWC                | 100%            | 7.73         | 7.02                                      | -0.12                       | 5.15                      | 1.60                      | 0.57                      |
| iOD                | 100%            | 7.92         | 7.14                                      | 0.98                        | 8.80                      | 2.64                      | 0.00                      |
| iCaRL(Wang et al.) | 100%            | 22.89        | 16.60                                     | -2.95                       | 37.61                     | 21.71                     | 2.79                      |
| iCaRL(our impl.)   | 100%            | 36.14        | 26.26                                     | -4.89                       | 60.80                     | 36.41                     | -0.60                     |
| w/ Efficient-CLS   | 25%             | 38.36(+2.22) | 26.64(+0.38)                              | -8.20(- <mark>3.3</mark> 1) | 61.26( <del>+0.46</del> ) | 39.58( <del>+3.1</del> 7) | -3.48(-2.88)              |
| W/ Enicient-CLS    | 100%            | 40.24(+4.10) | 28.18(+1.92)                              | -8.10(-3.21)                | 67.05(+6.25)              | 40.36(+3.95)              | -3.67(-3.07)              |
| A-GEM              | 100%            | 36.94        | 26.19                                     | -5.54                       | 58.79                     | 35.88                     | -8.38                     |
| w/ Efficient-CLS   | 25%             | 37.06(+0.12) | 26.36(+0.17)                              | -7.76(-2.22)                | 63.06(+4.27)              | 39.46(+3.58)              | -7.49( <mark>+0.89</mark> |
| w/ Enicient-CLS    | 100%            | 39.87(+2.93) | 27.97(+1.78)                              | -7.17(-1.63)                | 66.94(+8.15)              | 39.57(+3.69)              | -11.68(-3.30              |
| GDumb              | 100%            | 35.27        | 25.29                                     | -6.59                       | 58.85                     | 36.38                     | -5.21                     |
| w/ Efficient-CLS   | 25%             | 37.67(+2.40) | 25.59(+0.30)                              | -9.30(-2.71)                | 62.70( <del>+3.85</del> ) | 38.78( <del>+2.40</del> ) | -8.86(-3.65)              |
| W/ Enicient-CLS    | 100%            | 38.61(+3.34) | 26.04(+0.75)                              | -9.14(-2.55)                | 63.55(+4.70)              | 38.98(+2.60)              | -7.50(-2.29)              |
| DER++              | 100%            | 37.79        | 25.24                                     | -2.87                       | 55.82                     | 30.84                     | -6.08                     |
| w/Efficient CLS    | 25%             | 37.93(+0.14) | 25.64(+0.4)                               | -8.90(- <mark>6.0</mark> 3) | 59.70( <del>+3.88</del> ) | 34.15(+3.31)              | -11.21(-5.13              |
| w/ Efficient-CLS   | 100%            | 39.61(+1.82) | 26.73(+1.49)                              | -8.30(-5.43)                | 62.01(+6.19)              | 33.09(+2.25)              | -11.05(-4.97              |
|                    | - 4             |              |                                           |                             |                           |                           |                           |

compatible with existing CL methods

Wu et al. "Label-efficient online continual object detection in streaming video." ICCV 2023.

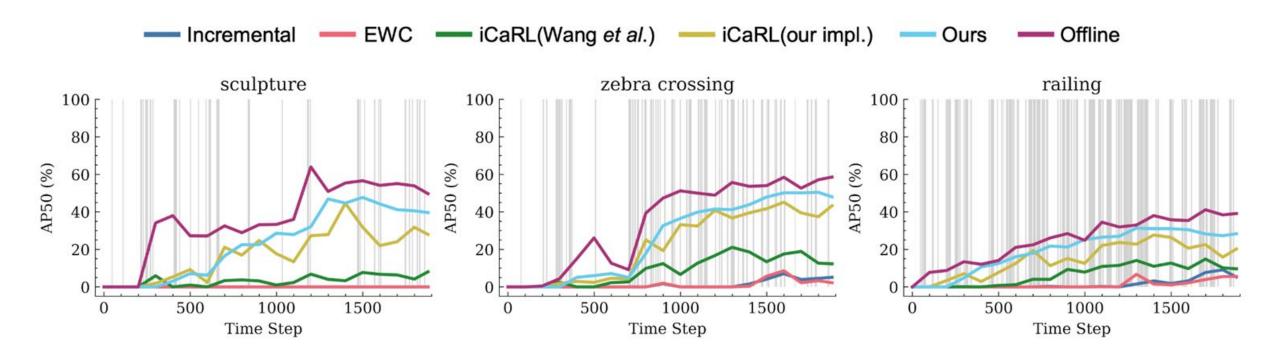
### Consistent improvement over all annotation costs



Wu et al. "Label-efficient online continual object detection in streaming video." ICCV 2023.

©Jay Wu, NUS

### Reduced forgetting even when class appears infrequently

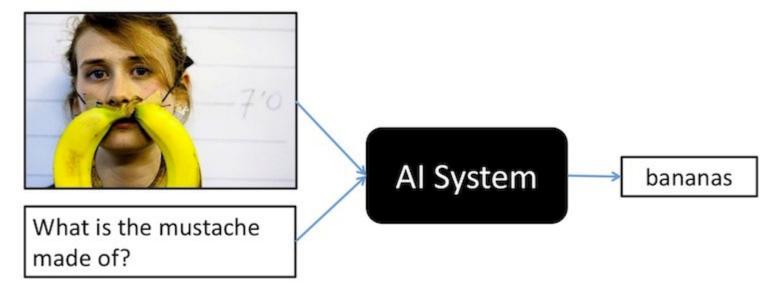


### Ablation on proposed components

|     | 50% |         |                                           | 25%   |                |                 | 12.5% |         |                 |       | 6.25%   |                 |       |
|-----|-----|---------|-------------------------------------------|-------|----------------|-----------------|-------|---------|-----------------|-------|---------|-----------------|-------|
| EMA | PL  | FAP (†) | $\operatorname{CAP}\left(\uparrow\right)$ | F (↓) | <b>FAP</b> (†) | $CAP(\uparrow)$ | F (↓) | FAP (†) | $CAP(\uparrow)$ | F (↓) | FAP (†) | $CAP(\uparrow)$ | F (↓) |
| ×   | X   | 34.68   | 25.78                                     | -4.15 | 33.70          | 24.57           | -4.30 | 28.76   | 19.80           | -5.48 | 23.04   | 17.75           | -3.31 |
| 1   | X   | 35.74   | 25.77                                     | -4.82 | 34.79          | 25.62           | -4.35 | 31.72   | 21.16           | -7.24 | 27.84   | 20.03           | -3.96 |
| ×   | 1   | 35.61   | 25.56                                     | -3.76 | 34.95          | 25.65           | -3.65 | 31.60   | 22.44           | -4.83 | 26.39   | 19.50           | -1.99 |
| -   | 1   | 38.61   | 26.90                                     | -7.29 | 38.36          | 26.64           | -8.20 | 33.92   | 23.04           | -7.71 | 29.72   | 20.31           | -5.36 |

- EMA effectively consolidates knowledge and avoid forgetting.
- Naive pseudo-labeling can improve AP, but fails to prevent forgetting.
- **Pseudo-labeling + EMA** achieves best results with minimal forgetting.

Visual question answering (VQA)



Source: [Antol et al., 2015]

# Continual Learning for VQA

### Scene-incremental scenario





**Q:** Where is the <u>elevator</u> in this picture? **A:** On the left.

Sports



**Q:** What are the men holding? **A:** <u>Ski poles</u>.



**Q:** Is there a <u>laptop</u> in this office? **A:** No.

# Continual Learning for VQA

### Function-incremental scenario



#### Attribute Recognition



**Q:** What <u>color</u> is the snow board on the right? **A:** Yellow.

#### Knowledge Reasoning



**Q:** What object <u>can be used to</u> <u>transport people</u>? **A:** Bus.

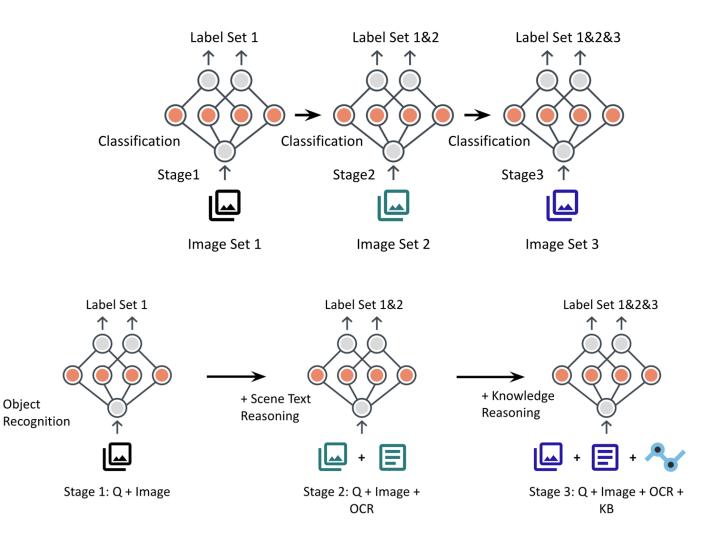
#### Scene Text Recognition



**Q:** What is the brand of this phone? **A:** <u>Nokia</u>.

# Continual Learning for VQA

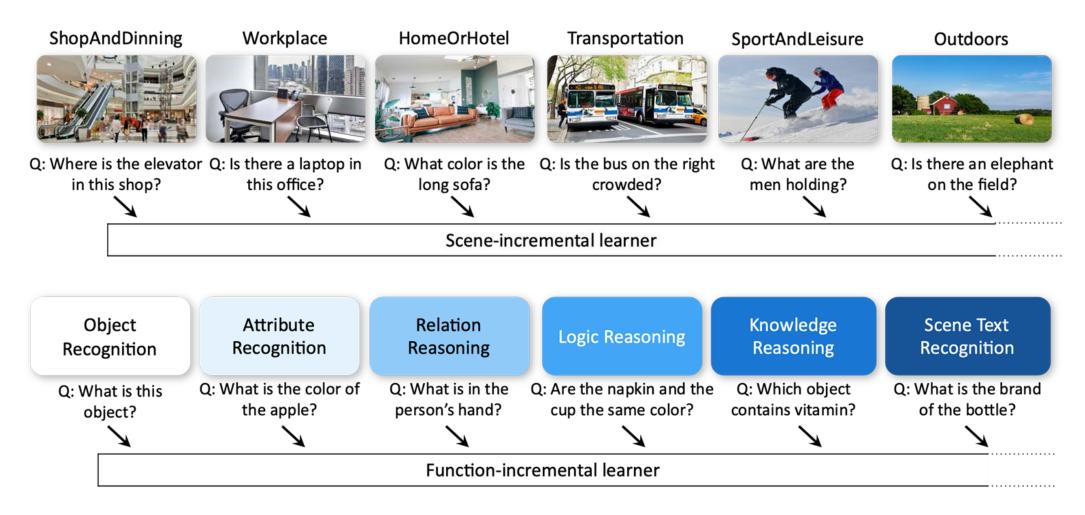
### CL for classification vs. CL for VQA



- one modality (vision)
- one function (classification)
- focus on catastrophic forgetting and interference in representation

- multi-modality (V + L)
- multiple functions (object recognition, attribute recognition, logic reasoning)
- focus on catastrophic forgetting in representation & reasoning

### A benchmark for Continual Learning On Visual quEstion answering



Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

### Sto CLOVE

#### Data construction for CLOVE-Scene





tores / shopping mall



at hom

arts/education

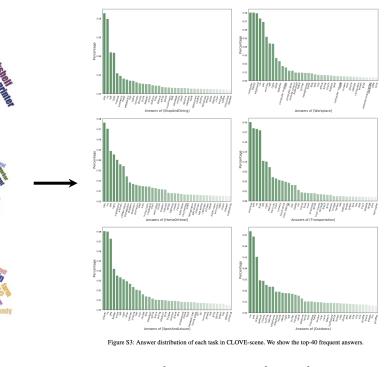
transportation



workplace

#ShopAndDining #Workplace #Workplace #HomeOrHotel #SportsAndLeisure

scene-specific QA selection



smooth answer distribution

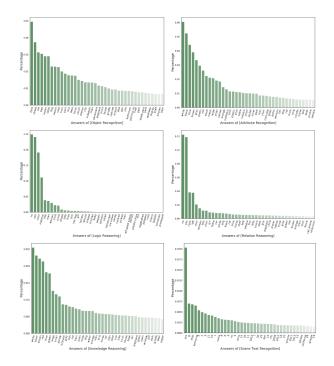
Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

# Sto CLOVE

### Data construction for CLOVE-Function

| Stage                  | Operation                       | Argument                      |
|------------------------|---------------------------------|-------------------------------|
| Object                 | Select, Query, Choose           | name                          |
| Attribute              | Query, Verify, Choose, Filter   | color, material, weather      |
| Relation               | Relate, Verify, Choose          | rel                           |
| Logic                  | Different, Same, Common, Choose | same color, choose healthier, |
| Knowledge Reasoning    | Find w/ KG                      |                               |
| Scene Text Recognition | Scene text recognition          |                               |

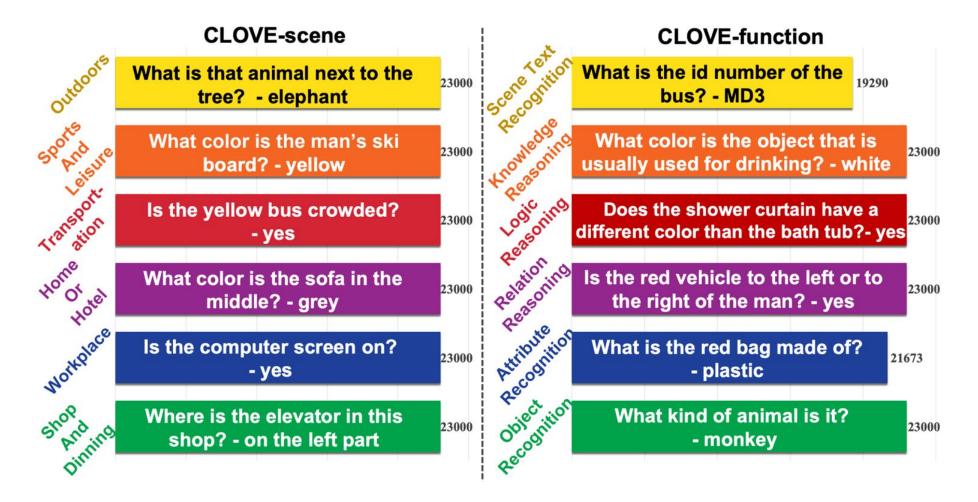
Function assignment given the rules



#### Smooth answer distribution

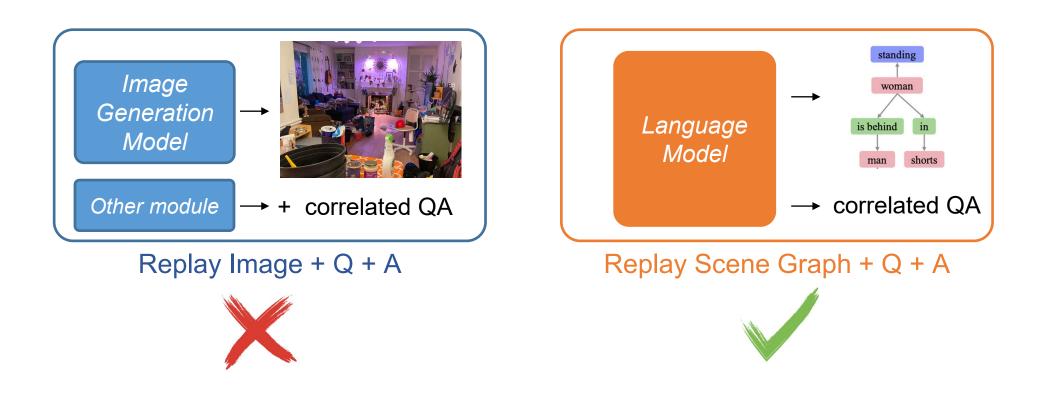
# Sto CLOVE

### QA examples



Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

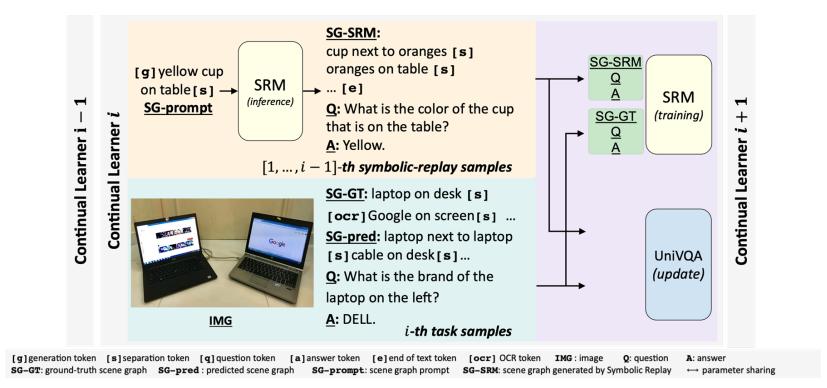
Image replay vs. scene graph replay



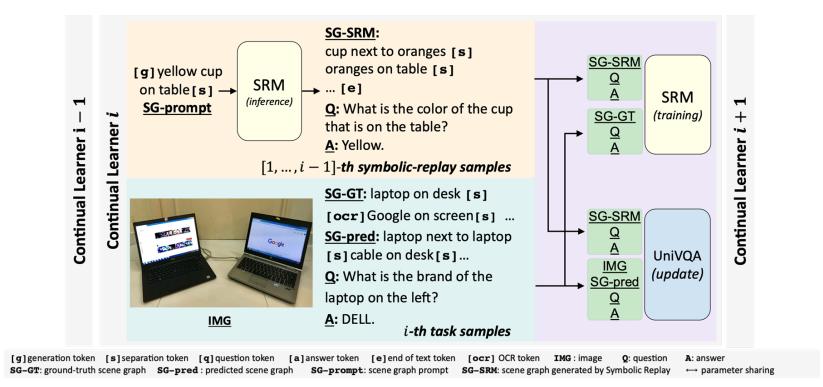
### **Overall framework**



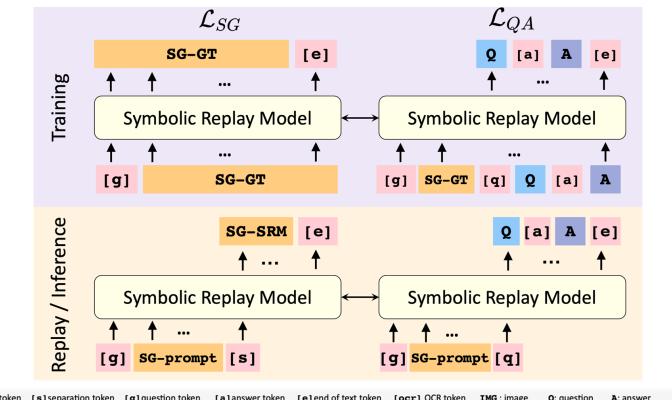
### **Overall framework**



### **Overall framework**



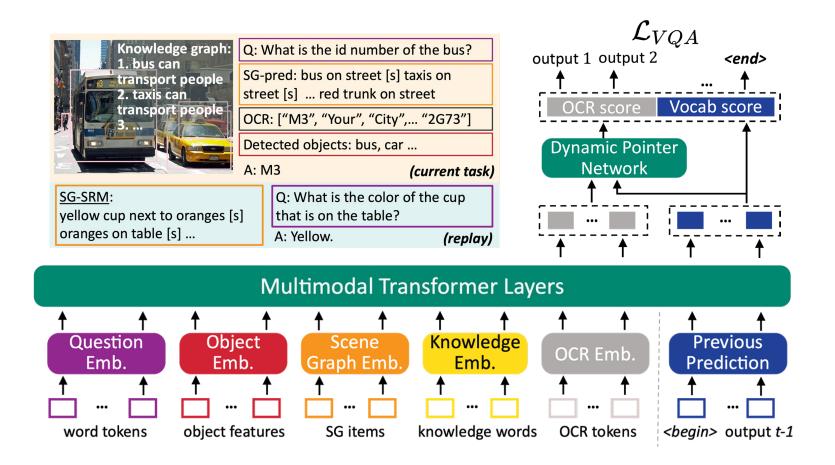
### Symbolic Replay Model



[g] generation token [s] separation token [q] question token [a] answer token [e] end of text token [ocr] OCR token IMG : image Q: question A: answer SG-GT: ground-truth scene graph SG-pred : predicted scene graph SG-prompt: scene graph prompt SG-SRM: scene graph generated by Symbolic Replay ↔ parameter sharing

Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

### Unified VQA Transformer (UniVQA)



Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

### Unified VQA Transformer (UniVQA)

| Method      | CLOVE-scene |        |        |        |        |        |       | CLOVE-function |    |        |        |        |        |        |       |
|-------------|-------------|--------|--------|--------|--------|--------|-------|----------------|----|--------|--------|--------|--------|--------|-------|
|             | abcdef      | bdfcae | beacfd | beadcf | bedfca | ecdfab | Avg.  | oarl           | ks | roslak | rklsao | rsolak | lkosra | kaorls | Avg.  |
| Finetune    | 27.53       | 27.98  | 28.39  | 27.71  | 24.49  | 25.42  | 26.92 | 27.6           | 50 | 29.33  | 21.12  | 30.65  | 25.43  | 22.82  | 26.16 |
| EWC         | 27.59       | 27.64  | 28.47  | 29.18  | 24.03  | 25.48  | 27.07 | 29.2           | 26 | 30.87  | 21.87  | 28.69  | 23.58  | 23.27  | 26.26 |
| MAS         | 27.41       | 27.15  | 28.19  | 27.34  | 25.40  | 26.78  | 27.05 | 28.7           | 73 | 31.59  | 28.62  | 28.57  | 24.26  | 26.73  | 28.08 |
| VQG         | 29.15       | 29.74  | 30.02  | 30.27  | 27.28  | 28.66  | 29.19 | 32.7           | 78 | 33.16  | 29.55  | 33.82  | 30.17  | 28.67  | 31.36 |
| LAMOL-m     | 29.40       | 28.52  | 29.45  | 29.86  | 26.52  | 27.82  | 28.60 | 28.4           | 12 | 29.04  | 24.16  | 32.17  | 26.94  | 26.92  | 27.94 |
| SGP (Ours)  | 32.21       | 33.72  | 34.37  | 33.18  | 31.84  | 32.98  | 33.05 | 45.9           | 97 | 41.80  | 39.05  | 42.95  | 38.65  | 43.62  | 42.01 |
| Real-rnd    | 36.60       | 37.69  | 35.50  | 36.51  | 35.86  | 36.84  | 36.50 | 44.8           | 3  | 42.62  | 39.28  | 43.37  | 40.85  | 40.08  | 41.84 |
| Real-kmeans | 36.91       | 38.15  | 37.01  | 38.30  | 37.93  | 34.86  | 37.19 | 40.2           | 8  | 41.19  | 38.49  | 42.21  | 38.39  | 36.29  | 39.48 |
| Offline     |             |        |        | 48.45  |        |        |       |                |    |        |        | 57.53  |        |        |       |

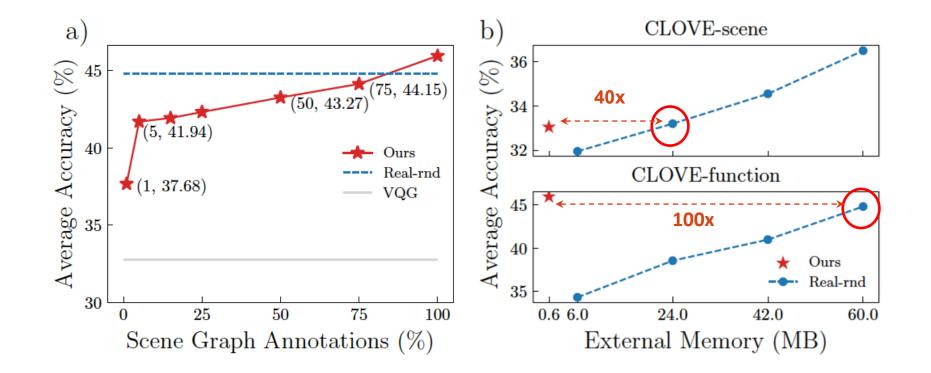
- SGP outperforms other real-data-free CL methods
- SGP is on par with real-data replay under CLOVE-function
- CLOVE is challenging

### Ablation study

| No. | Prompt type | Replay elements | CLOVE-Scene | <b>CLOVE</b> -Function |
|-----|-------------|-----------------|-------------|------------------------|
| #1  | Random      | Q + A           | 29.52       | 40.24                  |
| #2  | Random      | SG + Q + A      | 32.08       | 44.21                  |
| #3  | GT          | SG + Q + A      | 35.09       | 47.01                  |

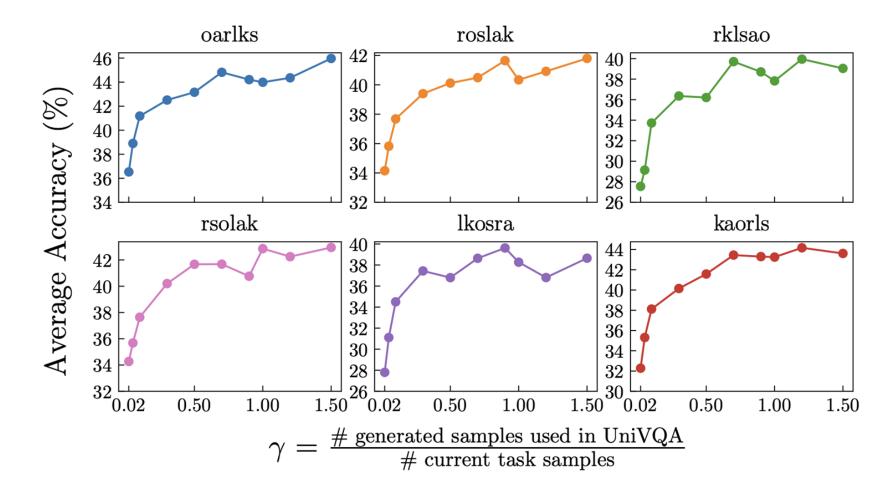
- Replay scene graph can prevent forgetting of past knowledge (#1 and #2)
- Using better prompts is promising (#2 and #3)

SGP is label-efficient and memory-efficient



Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

### # generated SG



Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.

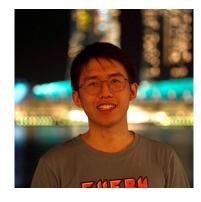
### Takeaways

### Label efficiency

- LEOCOD: a new, challenging and important setting for real-world applications
- Efficient-CLS: a plug-and-play module that learns efficiently and effectively with less supervision and minimal forgetting

### **Memory efficiency**

- CLOVE benchmark for continual learning in VQA
- Scene Graph as Prompt, a real-data-free replayed CL method





David Junhao Zhang

Stan Weixian Lei



Difei Gao



Wynne Hsu



Mengmi Zhang



Mike Shou







Wu et al. "Label-efficient online continual object detection in streaming video." ICCV 2023. Lei et al. "Symbolic replay: Scene graph as prompt for continual learning on vqa task." AAAI 2023.